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The forms of the superharmonic instabilities of irrotational surface waves on deep
water are calculated for wave steepnesses up to 99.9% of the limiting value. It is found
that as the limiting wave steepness is approached the rates of growth of the lowest two
unstable modes (n¯ 1 and 2) increase according to the asymptotic law suggested by the
theory of the almost-highest wave (Longuet-Higgins & Cleaver 1994; Longuet-
Higgins, Cleaver & Fox 1994; Longuet-Higgins & Dommermuth 1997). Moreover,
each eigenfunction becomes concentrated near the wave crest, with a horizontal scale
proportional to the local radius of curvature at the crest. These are therefore ‘crest
instabilities ’ in the original sense.

Similar calculations are carried out for the normal-mode instabilities of solitary
waves in shallow water, at steepnesses up to 99.99% of the limiting steepness. Similar
conclusions are found to apply, though with greater accuracy.

1. Introduction

The stability of a train of steep, progressive, irrotational waves in water of finite or
infinite depth is of some interest in connection with the theory of wave breaking.
Subharmonic instabilities, having wavelengths larger than the basic wavelength 2π}k,
can occur at relatively low wave steepness. But if we confine attention to the
superharmonic instabilities, that is to say two-dimensional instabilities having the same
space-periodicity as the unperturbed wave, then it is found that only very steep gravity
waves are appreciably unstable.† In deep water it was shown numerically by Tanaka
(1983) and analytically by Saffman (1985) that gravity waves first become unstable in
this way when the steepness parameter ak attains the value 0.4292, corresponding to
the first maximum in the total energy density. Similarly, for solitary waves Tanaka
(1986) showed that instability first occurred at a height-to-depth ratio a}h¯ 0.7824,
which again corresponded to the first maximum in the total wave energy E.

The wave steepnesses just mentioned are already high, being close to the limiting
steepnesses : ak¯ 0.4432 for a wave in deep water and a}h¯ 0.8332 for the solitary
wave. Calculation of the properties of such steep waves by ordinary methods presents
increasing difficulties as the limiting wave is approached. It was therefore of some
interest when Longuet-Higgins & Fox (1977) showed that the crest of any steep Stokes
wave (not the steepest) approached a certain asymptotic form characterized by a length
scale

l¯ q#}2g, (1.1)

† We are excluding the ‘bubbles ’ of non-stationary instability pointed out by MacKay & Saffman
(1986) and Kharif & Ramamonjiarisoa (1990).
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where q is the particle velocity at the wave crest in a reference frame moving with the
phase speed c, and g denotes gravity. The flow has a rounded crest at the origin, and
at infinity tends to the well-known 120° corner flow. In a second paper Longuet-
Higgins & Fox (1978) showed how to fit this inner flow to the outer flow in a wave in
deep water by an asymptotic matching technique assuming the parameter

ε#¯ gl}c#
!

(1.2)

to be small, c
!
¯ (g}k)"/# being the linear phase speed. A corresponding theory for

solitary waves, in which c
!
¯ (gd )"/#, has been given by Longuet-Higgins & Fox (1996).

Now in two recent papers (Longuet-Higgins & Cleaver 1994; Longuet-Higgins,
Cleaver & Fox 1994) it was suggested that for very steep waves the lowest
superharmonic instability of a progressive wave should correspond, in the limit as
ε U 0, with an instability of the inner flow of the almost-highest wave. The lowest
instability of the inner flow was therefore calculated, also the first-order correction to
this instability resulting from the matching process. The growth rates of the instability
apparently agreed with those found numerically by Tanaka (1983) for progressive
waves of finite amplitude. Tanaka’s calculations, however, at that time extended only
as far as ak¯ 0.439, and no eigenfunctions were available. One of us (M.S.L.-H.)
therefore proposed to Tanaka to extend his calculations (with a more modern
computer) to higher values of ak and to calculate if possible the corresponding
eigenfunctions. It is these calculations, first presented last year (Tanaka 1995), that are
reported fully in the present paper. We report also similar calculations for solitary
waves which are more accurate than those for periodic waves.

The calculations by Tanaka (1995) showed the need for a re-examination of the
numerical calculation reported in Longuet-Higgins & Cleaver (1994) and Longuet-
Higgins et al. (1994). This has led to a significant improvement in their accuracy (see
Longuet-Higgins & Dommermuth 1997, referred to herein as LHD). As will be shown
here, the revised values of the rate of growth as εU 0 agree satisfactorily with those
reported by Tanaka (1995), especially for the lowest mode (n¯ 1). The revised
calculations also show the presence of a second mode (n¯ 2) as was originally
suggested by Cleaver (1981) ; this also is consistent with Tanaka’s (1995) calculations.

The plan of this paper is as follows. In §§2 and 3 we describe the method of
computation, and the numerical results, for steep periodic waves in deep water, and in
§§4 and 5 we present corresponding results for the solitary wave in shallow water. In
§6 we compare the two sets of results with one another and with the eigenfunctions
obtained by LHD for the limiting case εU 0. A discussion follows in §7.

2. Numerical results for Stokes waves in deep water

To calculate the flow in a steady, irrotational gravity wave of finite amplitude in deep
water we have used the method described in Tanaka (1983). Waves of a given
amplitude are distinguished by a parameter ω¯ 1®q

c
}q

t
, where q

c
and q

t
are the

particle speed at the crest and the trough, respectively, observed in a reference
frame moving with the Stokes wave. The parameter ω is more suitable as the amplitude
parameter than ak in the sense that its range is known a priori to be 0%ω% 1. Thus
ω¯ 0 corresponds to the wave with infinitesimal amplitude, while ω¯ 1 corresponds
to the limiting wave with a stagnation point at its crest (i.e. q

c
¯ 0). The range of ω that

we treat here is 0.80%ω% 0.97. (Note that ω behaves similarly to the parameter ω«
used by Longuet-Higgins & Fox 1978.)
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N ak c error (%)

ω¯ 0.80

1

2

3

4

64
128
256

0.4267367789
0.4267368619
0.4267368619

1.0915699348
1.0915699350
1.0915699350

1.805¬10−%

3.820¬10−"!

1.602¬10−"!

ω¯ 0.97

1

2

3

4

512
1024
2048

0.4426166715
0.4427541436
0.4427542224

1.0922690822
1.0922769604
1.0922769604

5.260¬10!

5.666¬10−$

1.258¬10−)

T 1. Convergence of the Stokes wave in deep water

ω ak ε c}c
!

Rk}ε#

0.80 0.42674 0.18858 1.09157 5.3274
0.81 0.42855 0.17917 1.09201 5.3063
0.82 0.43022 0.16974 1.09235 5.2869
0.83 0.43173 0.16030 1.09261 5.2692
0.84 0.43312 0.15086 1.09279 5.2529
0.85 0.43437 0.14141 1.09290 5.2382
0.86 0.43551 0.13196 1.09295 5.2248
0.87 0.43655 0.12251 1.09294 5.2128
0.88 0.43749 0.11307 1.09289 5.2021
0.89 0.43835 0.10362 1.09282 5.1926
0.90 0.43912 0.09419 1.09272 5.1843
0.91 0.43983 0.08475 1.09261 5.1772
0.92 0.44047 0.07533 1.09251 5.1711
0.93 0.44106 0.06591 1.09242 5.1659
0.94 0.44158 0.05649 1.09235 5.1618
0.95 0.44204 0.04707 1.09231 5.1585
0.96 0.44244 0.03766 1.09228 5.1560

T 2. Calculated values of the parameters for periodic waves in deep water

Table 1 shows the convergence of the steepness parameter ak and the phase speed
c as the number N of Fourier modes used to express the flow is increased, for the cases
ω¯ 0.80 and ω¯ 0.97. The maximum deviation of the Bernoulli constant "

#
q#gy

along the free surface is also shown. The limiting value of ak is known to be 0.4432,
hence the ak of the two cases shown in the table are about 96.3% and 99.9% of the
limiting value. The table shows that N¯ 128 is sufficient to get the convergence of c
to the ten decimal places for ω¯ 0.80, while more than N¯ 1024 is necessary to get
the same convergence when ω¯ 0.97. The speed of convergence of the series
representing the Stokes wave also determines the speed of convergence of the solution
of the eigenvalue problem in the stability analysis, and this rapid slowdown of
convergence for larger values of ω causes serious difficulty in the stability calculation
later.

The range 0.80%ω% 0.97 corresponds to 0.1886& ε& 0.0282, see table 2. Within
this range of ε the asymptotic relations for ak and c derived by Longuet-Higgins & Fox
(1978) coincide with our numerical results up to four significant figures. The last
column of table 2 shows the radius of curvature R at the crest converging to the value
5.15ε# predicted in Longuet-Higgins & Fox (1977). According to the asymptotic
theory for the deep-water wave given in Longuet-Higgins & Fox (1978), the lowest-
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ε3(α–1)

F 1. The scaled crest curvature R}l for deep-water waves, as a function of ε$(α−").

order correction to the inner solution is proportional to ε$(α−") where α is the lowest
root of the transcendental equation

"

#
πα tan "

#
πα¯®

π

2o3
, (2.1)

that is to say α¯ 1.8027. In figure 1 we have plotted R}l against ε$(α−"), that is ε#.%!)"

and it can be seen that the plots lie almost on a straight line. (A small oscillation about
this line is also to be expected from the analysis.) From figure 1 we may deduce the
more accurate expression

R}lD 5.15259.5 ε$(α−") (2.2)
for the crest curvature R.

3. Normal modes of instability

In this Section we consider the normal modes of perturbation of the steady waves
calculated in §2, that is to say we seek those small perturbations whose time-
dependence is like eλt, where λ is a constant. The numerical method whereby the
problem is reduced to finding the eigenvalues and eigenfunctions of a pure imaginary
square matrix is explained in detail in Tanaka (1983). As mentioned in §1, for low
values of the wave steepness ak, or equivalently for low values of ω all the eigenvalues
λ
n

are pure imaginary and the normal modes behave sinusoidally in time. At
comparatively large values of ak or ω, there appear one or more real eigenvalues, each
corresponding to a perturbation which either grows or decays exponentially with t.
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N
e

λ#

"
N

e
λ#

"

ω¯ 0.80 10 ®0.02276 ω¯ 0.97 70 2.94771
15 ®0.01820 120 2.63295
20 ®0.01506 200 2.45113
30 ®0.01488 300 2.40413
50 ®0.01488 400 2.39750
70 ®0.01488 500 2.39659

T 3. Convergence of the eigenvalue of the lowest mode

ω E λ#

"
(ελ

"
)# λ#

#
(ελ

#
)#

0.80 0.073991 ®0.01488 ®0.000529 ®0.53723 ®0.019105
0.81 0.074032 ®0.00399 ®0.000128 ®0.50817 ®0.016312
0.82 0.074026 0.00766 0.000221 ®0.47864 ®0.013790
0.83 0.073979 0.02026 0.000521 ®0.44860 ®0.011528
0.84 0.073898 0.03411 0.000776 ®0.41800 ®0.009513
0.85 0.073791 0.04957 0.000991 ®0.38675 ®0.007734
0.86 0.073668 0.06718 0.001170 ®0.35480 ®0.006178
0.87 0.073534 0.08774 0.001317 ®0.32206 ®0.004834
0.88 0.073399 0.11238 0.001437 ®0.28849 ®0.003688
0.89 0.073268 0.14288 0.001534 ®0.25406 ®0.002728
0.90 0.073149 0.18197 0.001614 ®0.21883 ®0.001941
0.91 0.073046 0.23405 0.001681 ®0.18294 ®0.001314
0.92 0.072964 0.30643 0.001739 ®0.14657 ®0.000832
0.93 0.072904 0.41179 0.001789 ®0.10981 ®0.000477
0.94 0.072867 0.57390 0.001831 ®0.07219 ®0.000230
0.95 0.072849 0.84216 0.001866 ®0.03197 ®0.000071
0.96 0.072847 1.33468 0.001893 0.01593 0.000023
0.97 0.072852 2.39659 0.001912 0.08742 0.000070

T 4. Calculated values of the total energy density E and of the squared eigenfrequencies of the
normal-mode perturbations of a deep-water wave

Table 3 shows the convergence of the square of the eigenvalue λ
"

of the mode
n¯ 1 for the deep-water waves with ω¯ 0.80 and ω¯ 0.97. In these tables, N

e
is

the number of Fourier modes which are used to express the eigenfunctions and
does not have any direct relation with N of table 1 besides the trivial relation N

e
!N.

In terms of N
e

the size of the matrix whose eigenvalue problem we need to solve is
(2N

e
1)¬(2N

e
1). When ω¯ 0.80 we can have convergence of λ#

"
to five decimal

places with N
e
¯ 30, while for ω¯ 0.97 we get the convergence to only two decimal

places even when N
e

is increased to 400. When ω¯ 0.97 and N
e
¯ 400, the total

CPU time used in the construction of the matrix and the calculation of all the
eigenvalues and the eigenvectors was about 12 s on VP2600 of the Computation
Center of Nagoya University.

In the analysis of the local flow around the crest by LHD time and space are
normalized in such a way that g¯ 1 and q

c
¯o2, while in our calculations they are

normalized such that g¯k¯ 1 for the Stokes waves in deep water. The propagation
speed of the basic steady wave c

!
in the limit of infinitesimal amplitude equals 1. In

order to compare our results with those of LHD, we need to multiply our quantities
by ε−# for each dimension of space and ε−" for each dimension of time.
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0.002

0.001

(ελn)2

–0

0 0.01

ε3(α–1)

n=1

n=2

F 2. Squares of the growth rates λ
n

of the two lowest modes of instability of the deep-water
wave, scaled by the parameter ε, shown as a function of ε$(α−"). Crosses denote present calculation;
circles, the asymptotic theory of the almost-highest wave, from Longuet-Higgins & Dommermuth
(1997).

The square of the scaled eigenvalues ελ
"
ελ

#
of the two lowest eigenmodes n¯ 1 and

n¯ 2 are shown in table 4 and plotted in figure 2. The time-dependence of the
perturbation is assumed here to be like eλt, hence λ#" 0 implies instability. On the
other hand the asymptotic theory given in Longuet-Higgins et al. (1994) and LHD
indicates that the lowest-order corrections to the eigenfrequencies of the inner flow
vary as ε$(α−"). In figure 2 we therefore plot the results as functions of ε$(α−"). As
expected we see that the plots indeed fall approximately on a straight line, for small ε.
A slight oscillation about the straight line is also seen.

Figure 2 also shows the corresponding results from LHD, and it will be seen there
is close agreement over the expected range of ε.

Figure 3 shows the profile of the lowest unstable mode (n¯ 1) as a function of the
horizontal coordinate x for ω¯ 0.84, 0.88 and 0.92. It can be seen that as ω increases
the perturbation progressively shrinks and is confined to a narrower region around the
crest (which is at x¯ 0). The arrow in the figure indicates the direction of propagation
of the Stokes wave. The amplitude of the normal mode, which is arbitrary within the
framework of the linear stability analysis, is normalized in such a way that the
maximum deviation of the profile is equal to unity, and this convention will be used
throughout this paper.

Figure 4 shows the profiles of the same normal mode as those shown in figure 3, but
as functions of the scaled horizontal coordinate x}ε#. The widths of the curves are now
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x=0.92

x=0.88

x=0.841

0

–1

g1

–2 –1 0 1 2
x

F 3. Vertical displacement η
"
in the lowest unstable mode of a deep-water wave as a function

of the horizontal coordinate x, when ω¯ 0.84, 0.88 and 0.92.
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F 4. Vertical displacement η
"
in the lowest unstable mode of a deep-water wave as a function

of the scaled coordinate x}ε#, when ω¯ 0.84, 0.88 and 0.92.
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comparable, but the values of ω do not seem to be large enough for a discussion of the
asymptotic behaviour as εU 0. Nevertheless we can clearly observe a tendency to
converge towards some specific profile as ωU 1 (εU 0).

The second mode n¯ 2 has just become unstable for the steepest case ω¯ 0.97, and
it seems obvious that we need to carry on to larger values of ω in order to discuss the
asymptotic behaviour of the normal modes. For the case of ω¯ 0.97, we need to solve
the eigenvalue problem of a matrix larger than 800¬800 in order to obtain the
convergence of λ#

#
to three significant figures as we mentioned before. Although the

calculation for steeper cases is simple and straightforward, we did not carry it out for
reasons of expense. As we shall see, greater accuracy is attainable in the case of solitary
wave perturbations.

4. Numerical results for solitary waves in shallow water

The method which we employ here for calculating steady solitary waves is the same
as that explained in detail in Tanaka (1986). In this method, steady solitary waves with
different wave heights are distinguished by a parameter q}c where q¯ q

c
, the particle

velocity at the wave crest. In common with ω used for the deep-water waves in the
previous section, the range of q}c is known a priori to be 0% q}c% 1. Unlike ω,
however, q}c decreases as the wave gets steeper: q}c¯ 1 corresponds to the solitary
wave with infinitesimal wave height, while q}c¯ 0 corresponds to the limiting solitary
wave characterized by a 120° angular corner with a stagnation point (q¯ 0) at the
crest. The range of q}c we treat here is 0.01% q}c% 0.30. Values of the wave height
H and phase speed c at given values of q}c are shown in table 5; also shown is the
radius of curvature R at the wave crest. As in §§2 and 3 we may define an inner length
scale l¯ q#}2g and a small parameter

ε«#¯ gl}c#
!
, c#

!
¯ gd, (4.1)

which tends to zero as the wave approaches its limiting steepness, but since the value
of c#

!
here differs from the deep-water case the corresponding value of ε« is not precisely

equivalent to the ε of §§2 and 3 and so will be distinguished with a prime.
Unlike the deep-water wave in which we employed spectral representation for both

the deep-water wave and the perturbations to it, we use for the solitary wave a more
direct method in which the basic solitary wave and the perturbations are both
represented by the values at a discrete set of M points properly distributed along the
free surface. In our calculations a solitary wave and the perturbations to it are always
calculated at the same set of points.

Table 6 shows the convergence of the phase speed c, the wave height H and the
square of the eigenvalues λ

"
and λ

#
of the two lowest unstable modes, in the case

q}c¯ 0.01, as the number of nodes is increased.
Under the normalization g¯ 1 and d¯ 1, the limiting height for the steady solitary

wave H
max

is known to be 0.83322, hence the wave height of the highest solitary wave
shown in table 5 is about 99.99% of H

max
. For the steepest deep-water wave that was

treated in the previous section q}c was about 0.05, so it can be said that the solitary
wave shown in table 6 is much closer to the limiting wave than the steepest deep-water
wave that we treated. Table 6 shows that even for such a steep solitary wave, we can
obtain convergence up to nine significant figures for c and up to four significant figures
for λ#

"
with M¯ 60 only. The size of the matrix whose eigenvalue problem needs to be

solved in the stability analysis of the solitary wave is (2M®1)¬(2M®1). This much
faster convergence suggests that the solitary wave case should be much more promising
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q}c H}d ε« c}c
!

R}ε«#d

0.01 0.83312 0.00913 1.29089 5.15264
0.02 0.83286 0.01826 1.29089 5.15334
0.03 0.83243 0.02738 1.29088 5.15476
0.04 0.83183 0.03651 1.29086 5.15703
0.05 0.83106 0.04564 1.29085 5.16028
0.06 0.83106 0.05477 1.29086 5.16459
0.08 0.82798 0.07303 1.29098 5.17674
0.10 0.82536 0.09131 1.29127 5.19417
0.12 0.82228 0.10961 1.29174 5.21750
0.14 0.81869 0.12793 1.29233 5.24740
0.16 0.81448 0.14628 1.29296 5.28457
0.18 0.80954 0.16464 1.29356 5.32979
0.20 0.80374 0.18300 1.29401 5.38390
0.22 0.79695 0.20133 1.29421 5.44785
0.24 0.78908 0.21961 1.29407 5.52266
0.25 0.78472 0.22872 1.29385 5.56450
0.26 0.78005 0.23781 1.29352 5.60950
0.28 0.76798 0.25590 1.29249 5.70966
0.30 0.75824 0.27385 1.29092 5.82458

T 5. Parameters for the solitary wave

M c}(gd )"/# H}d (λ
"
d}c)# (λ

#
d}c)#

30 1.2908876618 0.8331121581 13.0763 0.682318
40 1.2908906712 0.8331160426 13.9659 0.713888
50 1.2908908571 0.8331162825 13.8925 0.714442
60 1.2908908823 0.8331163150 13.8940 0.714884
70 1.2908908866 0.8331163205 13.8931 0.714946
80 1.2908908874 0.8331163216 13.8930 0.714966
90 1.2908908876 0.8331163218 13.8929 0.714973

T 6. Convergence of the solitary wave and the eigenvalues of the two lowest eigenmodes when
q}c¯ 0.01

than the deep-water wave case for our present purpose which is to clarify the asymptotic
behaviour of unstable normal modes as εU 0.

Table 5 indicates that the scaled radius of curvature R}l approaches the theoretical
value 5.15 as before. According to the asymptotic theory for steep solitary waves
(Longuet-Higgins & Fox 1996) we expect the lowest-order corrections to the inner
solution to be of order ε«[$(α−")], as for the deep-water wave. Accordingly in figure 5 we
have plotted R}l against ε«[$(α−")] and we obtain as previously an almost straight-line
plot.

5. Eigenmodes for the solitary wave

As shown in figure 6, the total energy of the solitary wave exhibits three stationary
values within the range 0.01! q}c! 0.30. This behaviour of E is in agreement with the
known asymptotic theory for steep solitary waves (Longuet-Higgins & Fox 1996).
Hence when q}c¯ 0.01 we expect the existence of three unstable normal modes.
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F 5. The scaled crest curvature R}l for solitary waves, as a function of ε«[$(α−")].
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F 6. The total energy E of the solitary wave as a function of the parameter q}c.
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q}c I E λ#

"
λ#

#

0.01 2.54347 0.97268 13.89290 0.71497
0.02 2.54347 0.97268 3.45947 0.15537
0.03 2.54337 0.97260 1.52518 0.05006
0.04 2.54315 0.97246 0.84689 0.01488
0.05 2.54286 0.97233 0.53209 0.00242
0.06 2.54261 0.97228 0.36050
0.08 2.54275 0.97275 0.18886
0.10 2.54449 0.97439 0.10866
0.12 2.54839 0.97738 0.06489
0.14 2.55467 0.98164 0.03875
0.16 2.56312 0.98684 0.02242
0.18 2.57325 0.99248 0.01211
0.20 2.58438 0.99795 0.00577
0.22 2.59567 1.00260 0.00215
0.24 2.60620 1.00578 0.00043
0.25 2.61089 1.00661 0.00008
0.26 2.61506 1.00685
0.28 2.62138 1.00527
0.30 2.62436 1.00057

T 7. Calculated values of the impulse I and total energy E of the solitary wave, and of the
squared growth rates of the two lowest instabilities

0.002

0.001

0

0 0.01 0.02 0.03
ε′[3(α–1)]

(ε′λn )2

n=1

n=2

F 7. Scaled values of the squared growth rates of the two lowest modes of instability of the
solitary wave, as a function of ε«[$(α−")].
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F 8. Profile of the first unstable mode of the solitary wave (solid line). The dashed curve shows
the unperturbed wave profile : (a) q}c¯ 0.25, (b) q}c¯ 0.20, (c) q}c¯ 0.10, (d ) q}c¯ 0.02.
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F 9. Profiles of the first unstable mode of the solitary wave plotted against the scaled
coordinate x}ε«#.
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F 10. Comparison of the first unstable mode of the solitary wave when q}c¯ 0.25 (solid curve)
with a pure phase shift (dashed curve).

Numerical values of the total impulse and energy are given in table 7, along with the
squared growth rates of the two lowest instabilities.

In figure 7 we show the square of the scaled eigenvalues ε«λ
n

of the two lowest
unstable modes plotted as functions of ε«[$(α−")]. As yet there is no corresponding
asymptotic theory for the eigenvalues at general values of ε, but the points approach
the vertical axis along a straight line, as expected. The limiting values of ελ

n
as εU 0,

according to the asymptotic analysis of LHD, were shown in figure 2 above. It will be
seen that these are in reasonable agreement with the present calculations.

Figure 8(a–d ) shows the profiles of the lowest unstable mode (n¯ 1) for q}c¯ 0.25,
0.20, 0.10 and 0.02. The dashed line in each figure shows the profile of the unperturbed
solitary wave for the corresponding value of q}c. The horizontal axis is the original
horizontal coordinate x for which g¯ 1 and d¯ 1. It can be seen clearly that the length
scale of the normal mode gradually diminishes as q}cU 0 and the perturbation is
confined to a narrower region around the crest in a similar manner as that we observed
for the first unstable mode of the deep-water wave (see figure 3). When we replot in
figure 9 those profiles as functions of the scaled coordinate x}l (that is x}ε!# in our
scaling), there appears to be a convergence of the profile for sufficiently small values
of q}c (but see §6 below). Figure 10 compares the profile of the first unstable mode
when q}c¯ 0.25 (solid line) with the profile of the trivial neutral mode corresponding
to a horizontal shift (dashed line) ; this is simply the derivative of the profile of the
steady solitary wave, for this value of q}c. According to Saffman (1985) the trivial
neutral mode and the non-trivial mode should become identical at the point where the
non-trivial mode exchanges its stability. As the critical point for the lowest non-trivial
mode, which is equal to the first maximum of the total energy, is q}cE 0.259 as figure
6 indicates, the case shown in figure 10 (q}c¯ 0.25) is supercritical (in this sense) only
marginally. The closeness of the two profiles shown in figure 10 can be regarded as an
indication that our numerical results are in accord with Saffman’s theory.

Figure 11(a–d ) shows the profile η
#
of the second unstable mode as a function of x

for q}c¯ 0.05, 0.04, 0.03 and 0.02, respectively. The first three curves are also plotted
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F 11. Profile of the second unstable mode of the solitary wave (solid line). The dashed curve
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as functions of x}l in figure 12. The profile for q}c¯ 0.02 is practically indistinguishable
from the profile for q}c¯ 0.03.

6. Comparison of the deep-water wave and solitary wave

For general values of the deep-water wave steepness ak or the solitary wave steepness
H}d the rates of growth of the instabilities are not directly comparable as functions of
ε, since the parameters ε and ε« depend on external parameters and hence are defined
differently in the two cases. However the inner length and time scales

l¯
q#

2g
, τ¯

q

g
(6.1)

depend only on the velocity q, for fixed g, and not on ε, so that the scaled frequencies

λτ¯
λq

g
(6.2)

can be compared in the limit as εU 0.
For the limiting deep-water wave we have from figure 13, since q¯o2ε,

λ
"
q

g
¯ 0.0621,

λ
#
q

g
¯ 0.016. (6.3)

This can be compared with the limiting solitary wave for which, from figure 7,

λ
"
q

g
¯ 0.0621,

λ
#
q

g
¯ 0.014. (6.4)

On the other hand the limiting values according to the asymptotic theory of the almost-
highest wave (LHD) are

λ
"
q

g
¯ 0.061(4),

λ
#
q

g
¯ 0.01(8). (6.5)

The above values are reasonably consistent, but the extrapolated eigenvalues in (6.3)
and (6.4) are closer to each other than to those in (6.5), suggesting that the present
calculations are more accurate.

For a similar reason we can legitimately compare the eigenfunctions only in the limit
as εU 0, by taking as a horizontal scale the length l¯ q#}2g which is independent of
ε. In figure 14 is a comparison of the first unstable mode of the deep-water wave when
ω¯ 0.84 (ε¯ 0.1509) with the corresponding mode of the solitary wave when q}c¯
0.16 (ε«¯ 0.1279), but neither of these is necessarily close to the limiting form. For, the
agreement may be due partly to a similarity between the next-lowest-order corrections
to the inner solutions in these two cases.

In figure 15 we compare the first mode of the solitary wave when q}c¯ 0.02 (ε«¯
0.0183) with the first unstable mode of the almost-highest wave (from LHD). The
general similarity is clear, but there are significant differences. We remark that even at
this value of ε some differences are still to be expected, because the eigenfunction for
the almost-highest wave is that for the inner solution only, valid only when x is of order
ε#, i.e. x}l¯O(1). Even in this zone there are necessarily corrections of order ε$(λ−") (see
LHD, §2). Further, in the matching zone where x¯O(ε), i.e. x}l¯O(ε−"), there are
O(1) corrections to the inner solution. Thus even for the solitary-wave instability
shown in figure 15, when ε«¯ 0.0183, there are O(1) corrections to the inner solution
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F 15. Comparison of the first unstable mode of a solitary wave (q}c¯ 0.02, dashed curve) with
the lowest mode for the inner solution when ε¯ 0 (LHD, solid curve).

when x}l is of order 50. However, when x}l is of order 5, say, we would expect closer
agreement than is evident in the figure.

The eigenfunction for the solitary wave at q}c¯ 0.02 shown in figure 15 is very close
to the solitary-wave eigenfunction at q}c¯ 0.16 shown in figure 14, which suggests that
it has effectively converged, especially in the inner zone where x}l is of order 1.
Probably, therefore, the present determination of the lowest mode is more accurate
than that presented in LHD.

7. Conclusions and discussion

Our extended calculations of the lowest superharmonic instabilities of Stokes waves
in deep water strongly support the conclusion that these are indeed ‘crest instabilities ’,
as first suggested by Longuet-Higgins & Cleaver (1994) and Longuet-Higgins et al.
(1994) ; the numerical details being as revised by LHD.

Each crest instability first arises at a wave steepness ak corresponding to a stationary
value of the energy density E. At that value of ak it has the form of a pure phase shift
and so is not localized at the wave crest. However, our calculations have followed the
development of the two lowest instabilities (n¯ 1 and 2) as the wave steepness ak
approaches its limiting value. For the lowest mode (n¯ 1) the eigenfrequencies agree
very closely with the asymptotic values given in LHD. The eigenfunctions also
converge well and are in reasonable agreement with the lowest instability of the almost-
highest wave as determinated by LHD.

Contrary to a conclusion stated in Longuet-Higgins & Cleaver (1994) and Longuet-
Higgins et al. (1994), a second superharmonic instability (n¯ 2) has been found and
its eigenfrequency is consistent with the results of LHD. There is no doubt that higher
instabilities (n" 2) exist also.

Similar results have been obtained for solitary waves in shallow water, with
increased accuracy. There again the scaling introduced by Longuet-Higgins & Cleaver
(1994) and Longuet-Higgins et al. (1994) is found to govern the form and growth rates
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of the instabilities, as the solitary waves approach their maximum steepness. It should
be emphasized that the present computations apply only to the linear stages of the crest
instability. The nonlinear stages have been investigated by LHD and have been shown
to lead in some cases to overturning and breaking of the wave crests ; see also Tanaka
et al. (1987) and Jillians (1989). In this study we have neglected the effects of surface
tension,which may have a strong effect on the crest instability of any surface wave whose
length is less than 2 m – perhaps more – for example through the production of para-
sitic capillary waves. Once such short-scale features occur, the influence of viscosity will
increase drastically. These effects are presently under investigation by the authors.

We admit that our results can apply to wind waves in only a limited sense. For,
whereas we have treated the instability of a uniform wave train, a typical ocean wave
spectrum displays strong wave grouping and a wide range of length scales. Both of
these features will be associated with other types of wave instability, and hence wave
breaking. Nevertheless, the crest instabilities that we have considered here are
essentially localized phenomena. Hence they may typify the final stages of breaking in
other circumstances, provided the local scale is sufficiently great to avoid the effects of
surface tension.

M.S.L.-H. gratefully acknowledges the support of the US Office of Naval Research
under Contract N00014-91-J-1582.
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